Утка (аэродинамическая схема)

Rutan Model 61 Long-EZ. Пример самолёта построенного по аэродинамической схеме «утка».

«Утка» - аэродинамическая схема, при которой у летательного аппарата (ЛА) органы продольного управления расположены впереди крыла. Названа так, потому что один из первых самолёты, сделанных по этой схеме - «14-бис » Сантос-Дюмона - напомнил очевидцам утку: вынесенные вперед плоскости управления без хвоста сзади.

Преимущества

Классическая аэродинамическая схема ЛА имеет недостаток, называемый «потерями на балансировку». Это означает, что подьемная сила горизонтального оперения (ГО) на ЛА с классической схемой направлена вниз. Следовательно, крылу приходится создавать дополнительную подьемную силу (по сути, подьемная сила ГО складывается с весом ЛА).

Схема «утка» обеспечивает управление по тангажу без потерь подъемной силы на балансировку, т.к. подъемная сила ПГО совпадает по направлению с подъемной силой основного крыла. Поэтому ЛА, построенные по этой схеме, имеют лучшие характеристики грузоподьемности на единицу площади крыла.

Тем не менее, «утки» практически не используются в чистом виде из-за присущих им серьёзных недостатков.

Недостатки

Самолеты, построенные по аэродинамической схеме "Утка" имеют серьёзный недостаток, который называется «тенденция к клевку». «Клевок» наблюдается на больших углах атаки, близким к критическому. Из-за скоса потока за передним горизонтальным оперением (ПГО) угол атаки на крыле меньше, чем на ПГО. В результате по мере увеличения угла атаки срыв потока начинается сначала на ПГО. Это уменьшает подъемную силу на ПГО, что сопровождается самопроизвольным опусканием носа самолета - «клевком», - особенно опасным на взлете и посадке.

Пилоты, обученные летать на самолетах с классической аэродинамической схемой, при полетах на "утке" жалуются на ограничение обзора, создаваемого ПГО.

Также расположенное спереди подвижное горизонтальное оперение способствует увеличению эффективной площади рассеяния (ЭПР) самолета, а потому считается нежелательным для истребителей пятого поколения (примеры: американский F-22 Raptor и российский ПАК ФА) и разрабатываемого перспективного дальнего бомбардировщика (ПАК ДА), выполненных с соблюдением технологий радиолокационной малозаметности .

Биплан-тандем - «утка» с близкорасположенным передним крылом - схема, в которой основное крыло расположено в зоне скоса потока от переднего горизонтального оперения (ПГО). По такой схеме сбалансированы Saab JAS 39 Gripen и МиГ 1.44 .

Также различные разновидности схемы «утка» используются для многих управляемых ракет.

Литература

  • Лётные испытания самолётов, Москва, Машиностроение, 1996 (К. К. Васильченко, В. А. Леонов, И. М. Пашковский, Б. К. Поплавский)

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Утка (аэродинамическая схема)" в других словарях:

    Самолёта. А. с. характеризует геометрические и конструктивные особенности самолёта. Известно большое число признаков, по которым характеризуют А. с., но в основном их принято различать: по взаимному расположению крыла и горизонтального оперения… … Энциклопедия техники

    аэродинамическая схема Энциклопедия «Авиация»

    аэродинамическая схема - Рис. 1. Аэродинамические схемы самолёта. аэродинамическая схема самолёта. А. с. характеризует геометрические и конструктивные особенности самолёта. Известно большое число признаков, по которым характеризуют А. с., но в основном их принято… … Энциклопедия «Авиация»

Я отношусь к той категории моделистов, которым интересно самим сконструировать и построить самолет, а потом получать удовольствие от управления им. Но главное удовольствие - от результата творческого поиска.

Отлетав несколько сезонов на самодельном Diamant-е с OS MAX 50, стало немного скучно. Было понятно, что может самолет, и что могу я. Конечно, можно было заняться оттачиванием навыков 3D пилотажа, но душа просила чего-то необычного. Хотелось построить самолет, которого нет ни у кого, и который обладал бы уникальными, присущими только ему, пилотажными возможностями.

Попытка 1

Посмотрел, как летают радио бойцовки, появилась идея построить фанфлай типа "летающее крыло". Сказано-сделано. Начерчен чертеж, проработана компоновка, и вот самолет готов.

  • Размах: 1450 мм
  • Длинна: 1000 мм
  • Вес: 2000 г
  • Двигатель: OS MAX 50

Выезжаю на поле и понимаю, что ничего интересного я не построил. Да, летит, да, крутит какие-то фигуры. Но ничего интересного, все как обычно, даже немного скучно.

Проанализировав ситуацию, понимаю, что так и должно было быть… Классическая схема и схема "летающее крыло" отработаны до мелочей, и ничего нового предложить не могут. Начался творческий застой…

Находясь в кризисе, листаю старые журналы и натыкаюсь на модель схемы "Утка". Это уже становится интересно.

Идея

Схема утка обладает одной интересной особенностью. Рулевые поверхности расположены перед и за центром тяжести. Соответственно если смикшировать руль высоты с элеронами и сделать это как на кордовой пилотажке, то разворачивающий момент от рулей высоты будет приложен спереди и сзади центра тяжести. Это в свою очередь позволит выполнять петли очень малого радиуса. Также было известно из большой авиации то, что эта схема очень стабильно ведет себя на срывных режимах. Вот только толкающий винт расположенный сзади не способствовал выполнению 3D пилотажа.

Вывод напрашивался сам собой, двигатель надо поставить спереди, но тогда возникали проблемы с центровкой. Так как основное крыло расположено сзади (в отличие от классической схемы, где стабилизатор не несет вес самолета, у схемы утка он создает подъемную силу), а центр тяжести находится в пределах 10-20% САХ, сбалансировать эту конструкцию не было возможности. Опять тупик.… Листая дальше журналы, нахожу старый номер "Крылья Родины", в котором рассказывается о самолетах особых схем, и в их числе приведена схема "Тандем". А самое интересное в том, что там даны формулы расчета положения центра тяжести. Выдержку из этой статьи я и привожу.

Выдержка из статьи в журнале "Крылья родины" за февраль 1989 года.

При полете на больших углах атаки перед сваливанием срыв потока должен наступать в первую очередь на переднем крыле. В противном случае самолет при сваливании будет резко задирать нос, и переходить в штопор. Это явление называется "подхватом" и считается совершенно недопустимым. Способ борьбы с "подхватом" на "утке" и "тандеме" найден давно: необходимо увеличить угол установки переднего крыла по отношению к заднему, причем разница в углах установки должна составлять 2-3 градуса.

Правильно спроектированный самолет автоматически опускает нос, переходит на меньшие углы атаки и набирает скорость, тем самым реализуется идея создания несваливаемого самолета. У "стандартной утки" (площадь горизонтального оперения 15-20% от площади крыла и плечом оперения, равным 2.5-3 САХ) центр тяжести должен располагаться в пределах от 10 до 20% САХ. У тандема центровка должна быть в пределах 15-20% В экв (хорды эквивалентного крыла) смотри рисунок. Хорда эквивалентного крыла определяется следующим образом:

В экв = (S п +S з)/(l п 2 +l з 2) 1/2

При этом расстояние до носика эквивалентной хорды равняется:

Х экв = L/(1+S п /S з *К)-(S п +S з)/(4*(l п 2 +l з 2) 1/2)

Где К – коэффициент, учитывающий разность углов установки крыльев, скосы и торможение потока за передним крылом, равняется:

К = (1+0,07*Q)/((0.9+0.2*(H/L))*(1-0.02*(S п /S з)))

В приведенных формулах:

  • S п - площадь переднего крыла.
  • S з - площадь заднего крыла.
  • L - аэродинамическое плечо тандема.
  • l п - размах переднего крыла.
  • l з - размах заднего крыла.
  • Q - превышение угла установки переднего крыла над задним.
  • H - расстояние по высоте между осью переднего и заднего крыльев.

Окончательный вариант

Теперь общая идея сформировалась. Двигатель ставим спереди, крылья делаем одинаковыми, а приемник и аккумулятор сдвигаем в хвост самолета.

Привод элеронов на переднем и заднем крыльях раздельный. Всего используется 6 рулевых машинок.

Сразу строить самолет под 50-ый мотор было страшно. Оставался непонятным целый круг вопросов: на каком крыле делать элероны, а на каком руль высоты или на том и другом; какие углы атаки должны быть у крыльев; насколько крылья должны быть разнесены друг от друга; и, вообще, будет ли это летать?

Но творческий зуд захватил разум, и все сомнения были отброшены. Строю "Тандем" под 25-ый мотор. На нем и проверю, как это летит…

Попытка 2

Модель прорисована, начерчена и построена. Получилось следующее.

  • Размах обоих крыльев: 1000 мм
  • Длинна: 1150 мм
  • Хорда крыла с элероном: 220 мм
  • Расстояние между крыльями: 200 мм

Переднее крыло ставилось ниже оси двигателя на 20 мм, заднее выше на 20 мм. Крылья были абсолютно одинаковыми и взаимно заменяемыми, только на одном крыле были сделаны элероны, а на другом руль высоты.

Полет

Первый полет только добавил уверенности в правильности направления поиска. Модель была абсолютно предсказуема и адекватна в воздухе, стабильна на малых скоростях и самопроизвольно не валилась в штопор. Схема с рулем высоты на переднем крыле показала себя с лучшей стороны по отношению к схеме, когда руль высоты находился на заднем крыле. Это обусловлено тем, что на малых скоростях он выполнял роль закрылков, увеличивая подъемную силу на переднем крыле.

Решено! Изучаю поведение этой модели в воздухе и начинаю строить модель под 61 мотор. Пока строится большой самолет, летаем на маленьком. В процессе полетов находим еще одну интересную особенность модели. Она могла остановиться и стоять в воздухе против ветра. При перетягивании ручки на себя на малом газу она проявляла склонность к парашютированию.

Получилось следующее:

  • Размах: 1400 мм
  • Длинна: 1570 мм
  • Хорда с элероном: 300 мм
  • Расстояние между крыльев: 275 мм

Первый полет осуществляю с элеронами на заднем крыле и рулем высоты спереди.

Впечатления:

Устойчив, стабилен на всех скоростях, весьма предсказуем. Однако в полете большой модели открылась одна особенность. Самолет очень чутко реагирует на руль высоты. То есть, вывел его в горизонтальный полет, оттримировал на среднем газу - летит ровно и устойчиво, но стоит тронуть ручку высоты, и он резко, но на небольшой угол, меняет направление полета. Не то чтобы это напрягало или было опасно, просто надо учесть, что модель очень чутко реагирует на руль высоты.

Для учебного самолета это конечно неприемлемо, но ведь у нас FAN рассчитанный на продвинутого пилота.

Теперь пробую смикшировать руль высоты и элероны. То есть, когда тяну ручку на себя на переднем крыле, оба элерона идут вниз, а на заднем вверх. А вот, когда даю крен, элероны работают параллельно на обоих крыльях.

Неустойчивое поведение модели в горизонтальном полете, скорее всего, было связано с неправильными углами установки крыльев. К сожалению, изменить их без существенной переделки не было возможности.

Модель окончательно настроена, пробую, что она может в воздухе.

  1. Убираю газ. Тяну ручку на себя (зажатые расходы). Модель сбавляет скорость почти до остановки, потом плавно клюет носом, разгоняется и повторяет то же самое. Никакой тенденции к штопору. То есть, если специально не срывать поток с крыла, то срыв происходит очень плавно и тут же с набором скорости восстанавливается.
  2. Убираю газ. Тяну ручку на себя (полные расходы). Модель останавливается в воздухе и, сохраняя горизонтальное положение, начинает, как парашют опускаться вниз. Фигура "парашют". Даю ручку от себя – она переворачивается на спину и продолжает свой спуск вертикально вниз (просто чума какая-то). Фигура "перевертыш". То есть модель способна управляться рулями в режиме 100% срыва потока с несущих плоскостей!
  3. Расходы на максимум – кручу петлю. Правда, петлей это нельзя назвать. Скорее это классический "водопад" из 3D комплекса. Модель крутится вокруг фонаря, при этом медленно снижаясь. Причем работать газом не требуется. И очень легко меняется направление вращения при перекладке рулей. Фигура "шейкер".
  4. Делаю "парашют" и отклоняю руль поворота. Получаю очень медленный плоский штопор - фигура "сухой лист".
  5. Такая фигура как "хариер" переходит в разряд детских.
  6. "Квадратная петля" получается именно квадратной, поскольку радиусы поворота на углах почти не читаются.

Описывать фигуры можно еще очень долго. Скажу только одно. Этот самолет может больше, чем я, и способен научить продвинутого пилота еще нескольким новым фигурам недоступным на обычной технике. И особенно хочется отметить прогнозируемость и стабильность самолета, что бы вы с ним не вытворяли.

Кажется, я получил то, что ХОТЕЛ!

Попытка 4

Хоть второй и третий самолеты показали отличные летные данные, но остался еще один очень важный вопрос: какие оптимальные углы атаки у крыльев? Для решения этой задачи было решено построить модель под 50-ый мотор, с возможностью изменять угол атаки крыльев на земле. К тому же, модель №3 была разбита из-за отказа аппаратуры.

Также было решено поставить переднее крыло выше оси двигателя, а заднее ниже (на предыдущей модели было наоборот, просто хотелось проверить - скажу сразу, каких либо изменений в поведении модели я не заметил.) и сделать небольшой скос по передней кромке, переднее крыло получило неявно выраженное положительное "V", а заднее отрицательное "V". Это должно было придать стабильности на малых скоростях в прямом и обратном пилотаже соответственно.

Подробно останавливаться на описании конструкции и процессе изготовления не буду. Она ничем не отличается от обычного Фанфлая и понятна из фотографий.

Изобретение относится к самолетам с передним горизонтальным оперением. Самолет схемы «утка» включает крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение (ПГО). Самолет имеет равномерную загруженность крыла и ПГО на единицу площади, при отношении расстояния между планами ПГО к среднему арифметическому величин хорд каждого из планов, равном 1,2. Изобретение направлено на уменьшение размеров самолета. 1 ил.

Изобретение относится к самолетам с передним горизонтальным оперением, преимущественно к сверхлегким, спортивным.

Известен самолет схемы «утка», включающий крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение .

У самолета схемы «утка» загруженность переднего горизонтального оперения (ПГО) на единицу площади существенно меньше, чем у крыла. Такое положение является следствием того, что отношение расстояния между планами ПГО к среднему арифметическому величин хорд этих планов составляет всего 0,7. Поскольку несущая площадь ПГО используется неэффективно, требуется увеличение размеров площади крыла и переднего горизонтального оперения, что увеличивает размеры самолета.

Технической задачей, решаемой настоящим изобретением, является уменьшение размеров самолета.

Поставленная задача решается за счет того, что согласно изобретению в самолете схемы «утка», включающем крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение (ПГО), имеется равномерная загруженность крыла и ПГО на единицу площади, обеспечиваемая при отношении расстояния между планами ПГО к среднему арифметическому величин хорд каждого из планов, равном 1,2.

Такое выполнение конструкции самолета позволяет уменьшить его размеры.

Изобретение поясняется конкретным примером его выполнения и прилагаемым чертежом.

На фиг. 1 изображено сечение бипланного переднего горизонтального оперения самолета схемы «утка» по плоскости, параллельной базовой плоскости самолета, выполненного согласно изобретению.

Устройство «Самолет схемы «утка» включает крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение, состоящее из нижнего плана и верхнего плана. При этом удельная нагрузка ПГО равна удельной нагрузке крыла и составляет, например, 550 ньютонов на 2.2 квадратный метр. То есть имеется равномерная загруженность крыла и ПГО на единицу площади.

На фиг. 1 величина хорды нижнего плана 1 ПГО обозначена литерой bн, а величина хорды верхнего плана 2 - литерой bв. Расстояние между верхним 2 и нижним 1 планами обозначено буквой h.

Хорда bн нижнего плана 1 равна хорде bв верхнего плана 2 и составляет, например, 300 мм. Расстояние h между планами 1 и 2 равно, например, 360 мм. При этом отношение расстояния h к среднему арифметическому величин хорд планов составляет 1,2.

Величина указанного отношения обеспечивает равномерную загруженность крыла и ПГО для сверхлегких спортивных самолетов. Это следует из следующих обстоятельств.

Уменьшение величины h приводит с одной стороны к смещению назад фокуса самолета, что положительно до тех пор, пока загруженность ПГО не сравняется с загруженностью крыла. С другой стороны уменьшение величины h сопровождается увеличением индуктивного сопротивления ПГО, что, безусловно, отрицательно. В связи с этим, явным образом невозможно определить, какую именно величину расстояния между планами ПГО следует выбирать. При этом надо иметь в виду, что с точки зрения уменьшения суммарной площади крыла и ПГО и, следовательно, размеров самолета должно выполняться условие равномерной загруженности крыла и ПГО на единицу площади.

При одинаковой, или почти одинаковой загруженности крыла и ПГО выполняется условие превышения на три градуса критического угла атаки крыла над критическим углом атаки ПГО в их посадочной конфигурации. Это условие является обязательным для предотвращения «клевка» - резкого опускания носа самолета из-за срыва потока на ПГО. При этом незначительная разница загруженности возможна как в пользу ПГО, так и крыла.

Величина вышеприведенного соотношения выявлена посредством аналитических исследований и проверки их результатов посредством летных испытаний модели самолета, на которой имелась возможность изменять расстояние между планами ПГО.

ИСТОЧНИКИ ИНФОРМАЦИИ

Самолет схемы «утка», включающий крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение (ПГО), отличающийся тем, что в нем имеется равномерная загруженность крыла и ПГО на единицу площади, обеспечиваемая при отношении расстояния между планами ПГО к среднему арифметическому величин хорд каждого из планов, равном 1,2.

Похожие патенты:

Изобретение относится к области авиации, в частности к конструкциям высокоскоростных летательных аппаратов. Летательный аппарат содержит фюзеляж с кабиной управления, треугольной формы крыло, двигатели, установленные с возвышением над крылом, хвостовое оперение, шасси.

Изобретение относится к авиации, более конкретно - к аппаратам тяжелее воздуха, а именно к самолетам схемы “утка”, и может быть использовано в конструкции пассажирских, транспортных самолетов для повышения их экономичности и топливной эффективности.

Изобретение относится к области летательных аппаратов. Носовая часть летательного аппарата содержит кабину управления с вытянутой вперед головкой в форме конуса, снабженной поворотной на вертикальной оси деталью в виде клина, конец которой выполнен острым по направлению к набегающему потоку воздуха, имеет возможность отклонения влево и вправо на угол от 0о до 10о с помощью поворотного гидродвигателя/пневмодвигателя и совершения колебательных движений, приводящих к синусоидального вида траектории полета летательного аппарата. Изобретение направлено на повышение маневренности летательного аппарата в горизонтальной плоскости. 1 з.п. ф-лы, 3 ил.

Изобретение относится к летательным аппаратам легкомоторной авиации. Мотопланер содержит фюзеляж, двигатель, несущее крыло и вспомогательное крыло, рычаги приводов в управлении крыльев, руля поворота, колеса, руля высоты. Несущее крыло оснащено шарнирными узлами, из которых два расположены симметрично относительно поперечной оси симметрии на лонжероне. Один шарнирный узел расположен на вспомогательном лонжероне и закреплен на стойке, которая закреплена шарнирно на ползуне, подвижно установленном в направляющих рамы, и связан со стойкой штурвала подпружиненной тягой. Вспомогательное крыло состоит из двух независимых консолей, посаженных подвижно на поперечную ось, неподвижно закрепленную в носовой части рамы, оснащенных рычагами, связанными тягами с двуплечим рычагом штурвала. Стойка переднего колеса, подвижно закрепленная во втулке рамы, оснащена обтекателем колеса, выполненным в форме поворотного киля, и оснащена двуплечим рычагом, снабженным компенсаторами. Изобретение направлено на повышение безопасности полета. 1 з.п. ф-лы, 9 ил.

Группа изобретений относится к авиационно-космической технике и может быть использована для осуществления полетов в атмосфере и космическом пространстве, при взлёте с Земли и возвращении на неё. Аэрокосмический самолёт (АКС) выполнен по аэродинамической схеме «утка-бесхвостка». Носовые плоскости и крылья образуют совместно с фюзеляжем дельтообразную несущую поверхность. Ядерный ракетный двигатель (ЯРД) содержит теплообменную камеру, состыкованную с ядерным реактором через радиационную защиту. В качестве рабочего тела используется (частично) атмосфера, сжижаемая бортовыми установками ожижения. Питающие и охлаждающие бортовые турбоагрегаты и турбоэлектрогенераторы, а также управляющие реактивные двигатели подключены к теплообменной камере с возможностью работы непосредственно на маршевом рабочем теле. При отключенном маршевом сопле в ЯРД предусмотрено специальное запорное устройство. В долговременных аэрокосмических полетах АКС периодически дозаправляется сжижаемой атмосферной средой. Техническим результатом группы изобретений является повышение эффективности АКС с ЯРД за счет повышения их тяговооруженности и термодинамического качества при обеспечении устойчивости и управляемости полета. 2 н. и 3 з.п. ф-лы, 10 ил.

Изобретение относится к области авиационной техники. Сверхзвуковой самолет с крыльями замкнутой конструкции (ССКЗК) имеет планер с передним горизонтальным оперением, два киля, низко расположенное переднее крыло, имеющее концевые крылышки, соединенные по дуге с концами высокорасположенного заднего крыла, корневые части которого соединены с концами отклоненных наружу килей, фюзеляж и турбореактивные двухконтурные двигатели (ТРДД). ССКЗК выполнен по аэродинамической схеме продольного триплана с разнонаправленными в поперечной плоскости стреловидными крыльями замкнутой конструкции. Передние и задние части гондол ТРДД смонтированы в изломах под внутренней частью заднего крыла и над внутренней частью стабилизатора переменной стреловидности U-образного оперения, имеющего на левой и правой консолях как внутренние рулевые поверхности, смонтированные с внутренних бортов соответствующих гондол, так и переднюю и заднюю кромки. Комбинированная силовая установка имеет разгонно-маршевые ТРДД и вспомогательный маршевый прямоточный воздушно-реактивный двигатель. Изобретение направлено на улучшение естественного ламинарного сверхзвукового обтекания системы крыльев. 4 з.п. ф-лы, 3 ил.

Изобретение относится к авиации. Сверхзвуковой самолет с тандемными крыльями имеет продольную компоновку триплана и содержит фюзеляж с плавным сопряжением наплывов дельтовидного в плане крыла (1), низкорасположенное заднее крыло (8) типа обратная “чайка”, переднее горизонтальное оперение (6), вертикальное оперение, выполненное совместно со стабилизатором (7), два турбореактивных двухконтурных двигателя, передние и задние части которых смонтированы соответственно под крылом типа чайка и по внешним их бортам с консолями стабилизатора и трехопорное шасси. Фюзеляж (3) снабжен конусообразным гасителем (4) звукового удара в носовом обтекателе (5). Крылья выполнены соответственно с отрицательным и положительным углами их поперечного V, имеют переменную стреловидность и образуют при виде спереди ромбовидную замкнутую конструкцию. Стабилизатор выполнен с обратной V-образности с округленной вершиной и оснащен гондолой (14) двигателя. Изобретение повышает аэродинамическую эффективность летательного аппарата. 6 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к области авиационной техники. Сверхзвуковой конвертируемый самолет содержит планер, включающий переднее горизонтальное оперение, вертикальное оперение, переднее треугольное крыло типа чайка, заднее крыло с трапециевидными консолями, разгонно-маршевый реактивный двигатель и вспомогательные маршевые прямоточные воздушно-реактивные двигатели. Переднее крыло и заднее крыло размещены в замкнутой конструкции продольного триплана с возможностью преобразования полетной конфигурации. Изобретение направлено на повышение бесшумности полета путем улучшения ламинарного сверхзвукового обтекания крыльев. 5 з.п. ф-лы, 3 ил.

Изобретение относится к летательным аппаратам схем «утка» и «нормальная». Летательный аппарат (ЛА), включает механизированное крыло и флюгерное горизонтальное оперение (ФГО), с которым связан серворуль. ФГО (1) с серворулем (3) шарнирно размещены на оси вращения. Производная по углу атаки ЛА коэффициента подъемной силы ФГО повышается от нуля до необходимой величины за счет того, что угол между базовыми плоскостями ФГО (1) и ЛА изменяется кратно изменению угла между базовыми плоскостями серворуля (3) и ЛА при изменении угла атаки ЛА механизмом из элементов (4, 5, 6, 7, 8, 9, 10). В «утке» угол порота ФГО меньше угла поворота серворуля, а в нормальной схеме - больше. В результате в обеих схемах фокус смещается назад. В нормальной схеме это позволяет увеличить нагрузку на стабилизатор - ФГО, а в «утке» - использовать современные средства механизации крыла при сохранении статической устойчивости. Изобретение направлено на уменьшение площади крыла за счет оптимизации загруженности горизонтального оперения. 3 ил.

Изобретение относится к авиационной технике. Летательный аппарат (ЛА) аэродинамической схемы «флюгерная утка» содержит механизированное крыло и флюгерное переднее горизонтальное оперение (ФПГО) (10) с серворулем (3), которые шарнирно размещены на оси вращения ОО1. Производная по углу атаки ЛА коэффициента подъемной силы ФПГО повышается от нуля до необходимой величины за счет того, что угол между базовыми плоскостями ФПГО (10) и ЛА изменяется лишь на часть изменения угла между базовыми плоскостями серворуля (3) и ЛА при изменении угла атаки ЛА механизмом из элементов (11, 12, 13). Для управления по тангажу ось ОО3 имеет возможность смещаться к оси ОО1 или от нее, при этом ее положение зафиксировано тягой (14), являющейся элементом системы управления. Изобретение направлено на уменьшение площади крыла за счет уравнивания с ним крейсерской загруженности ФПГО. 3 з.п. ф-ы, 4 ил.

Изобретение относится к авиации. Сверхзвуковой преобразуемый самолет содержит фюзеляж (3), трапециевидное ПГО, стабилизатор (7), силовую установку, включающую два турбореактивных двухконтурных двигателя форсажных в гондолах, размещенных по обе стороны от оси симметрии и между килями (18), смонтированных на конце фюзеляжа (3) на верхних и боковых его частях. Самолет также содержит переднее крыло (1) с наплывом (2), выполненное с переменной стреловидностью типа «обратная чайка», снабженное предкрылками (8), заостренными законцовками (9), флапперонами (10). Сзади и ниже поверхностей первого крыла (1) на балках установлены цельноповоротные консоли заднего крыла (13), снабженные закрылками (14), с возможностью поворота в вертикальной поперечной плоскости вокруг продольной оси на поворотной средней части (15) балки. Также самолет содержит U-образное оперение, имеющее кили (18) с серповидной задней кромкой и цельноповоротными развитыми заостренными законцовками (19). Изобретение улучшает подъемную силу и управляемость и повышает аэродинамическую эффективность, а также уменьшает шум самолета. 3 з.п. ф-лы. 1 ил.

Изобретение относится к области авиации, в частности к конструкциям самолетов вертикального взлета и посадки (СВВП). СВВП выполнен по схеме "утка", снабжен дополнительным хвостовым рулем высоты, состоящим из закрепленных с возможностью поворота на оси вращения носовой части и хвостовой части с нижней и верхней поверхностями. Ширина хвостового руля высоты равна ширине фюзеляжа. Насадок каждого подъемно-маршевого вентилятора снабжен боковыми ограничителями потока воздуха от вентилятора. Поворотные профили решеток выполнены в виде сборных гибких лопаток, а выходное сечение насадка выполнено сложной формы с верхней и нижней горизонтальными гибкими кромками. Выхлопные сопла двигателей прилегают к верхней поверхности дополнительного хвостового руля высоты, по краям нижней поверхности фюзеляжа установлены продольные гребни. Достигается возможность получения дополнительной подъемной силы на взлете, посадке и переходных режимах полета. 5 з.п. ф-лы, 4 ил.

Изобретение относится к самолетам с передним горизонтальным оперением. Самолет схемы «утка» включает крыло, фюзеляж, двигательную установку, шасси, вертикальное оперение и бипланное переднее горизонтальное оперение. Самолет имеет равномерную загруженность крыла и ПГО на единицу площади, при отношении расстояния между планами ПГО к среднему арифметическому величин хорд каждого из планов, равном 1,2. Изобретение направлено на уменьшение размеров самолета. 1 ил.

У «стандартной утки» с площадью горизонтального оперения (переднего крыла) в пределах 15...20% площади основного крыла и плечом оперения, равным 2,5...3 В Сах (средней аэродинамической хорды крыла), центр тяжести должен располагаться в пределах от - 10 до - 20%ВСАХ. В более общем случае, когда переднее крыло по параметрам отличается от оперения «стандартной утки», или у «тандема» для определения требуемой центровки удобно услов« но привести эту компоновку к более привычной для понимания нормальной аэродинамической схеме с условным эквивалентным крылом (см. рис.).

Центровка, как и в случае нормальной схемы, должна лежать в пределах 15...25% ВЭКВ (хорды условного эквивалентного крыла), которая находится следующим образом:

При этом расстояние до носка эквивалентной хорды равняется:

Где К - коэффициент, учитывающий разность углов установки крыльев, скосы и торможение потока за передним крылом, равняется:

Учтите, что эмпирические формулы и рекомендации по определению центровки достаточно приблизительны, поскольку взаимное влияние крыльев, скосы и торможение потока за передним крылом рассчитать трудно, точно это определяется только по продувкам. Авиаторам-любителям для экспериментальной проверки центровки самолета необычной схемы рекомендуем пользоваться летающими, в том числе и кордовыми, моделями. В практике авиастроения такой метод иногда применяется. И в любом случае для самолета любительской постройки центровку, определенную по формулам, следует уточнить при выполнении скоростных рулежек и подлетов.

по материалам: СЕРЬЕЗНОВ, В. КОНДРАТЬЕВ "В НЕБЕ ТУШИНА - СЛА" "Моделист-Конструктор" 1988, №3