Большой реактивный самолет – вместе с сотнями находящихся в нем пассажиров – весит несколько сотен тонн. Как может такая огромная и тяжелая машина, во-первых, оторваться от земли и, во-вторых, оставаться в воздухе на пути длиной в тысячи километров? Самолеты работают на основе сложной смеси принципов аэродинамики – теорий, которые объясняют движение воздуха и поведение тел, движущихся через этот воздух.

Самолеты приводятся в действие двигателями. В небольших самолетах обычно используются поршневые двигатели. Поршневой двигатель вращает воздушные винты, а воздушные винты создают тягу, благодаря которой самолет перемещается в воздухе, – точно так же, как винт судна создает тягу, заставляющую судно двигаться по воде.

В больших самолетах используются реактивные двигатели, которые приводятся в действие посредством сжигания топлива. Такие двигатели выталкивают огромные количества воздуха, а реактивная сила заставляет их двигаться вперед.

Самолеты способны подняться в воздух и оставаться в воздухе благодаря форме своих крыльев. Крыло у самолета снизу плоское, а сверху закругленное. Когда создаваемая двигателем тяга заставляет самолет двигаться вперед, воздух разделяется, проходя мимо крыла с двух сторон. Над закругленной поверхностью крыла воздух проходит быстрее, чем под плоской нижней частью.

Быстрее движущийся воздух сверху становится разреженным, давление его становится меньше, чем у воздуха внизу крыла, и благодаря этому крыло стремится подняться вверх. Таким образом, неравное давление воздуха, возникающее благодаря форме крыльев самолета, порождает силу, которая называется подъемной. Благодаря этой силе самолет может лететь.

Сила движущегося воздуха используется также для того, чтобы управлять самолетом. Управление самолетом осуществляется с помощью элеронов (управление по крену), расположенных на крыльях и хвосте самолета руль высоты (управление по тангажу, т.е снижение или набор высоты. Если они будут установлены под углом, то будут создавать препятствие для воздушного потока, в результате чего самолет будет разворачиваться или менять траекторию полета.

Для того чтобы оставаться в воздухе, самолет должен быть все время в движении, его крылья должны рассекать воздух для создания подъемной силы. Движущийся воздух необходим также для управления самолетом.

Другими словами, самолет не может летать, если не будет двигателей, которые создают тягу. А для того чтобы оторваться от земли и подняться в воздух, самолет должен сначала промчаться на большой скорости по земле.

Довольно странно наблюдать, как многотонная машина легко поднимается со взлетной полосы аэродрома и плавно набирает высоту. Казалось бы, поднять столь тяжелую конструкцию в воздух задача невыполнимая. Но, как видим, это не так. Почему самолет не падает, и за счет чего летит?

Ответ на этот вопрос лежит в тех физических законах, которые позволяют поднять в воздух летательные аппараты. Они верны не только в отношении планеров и легких спортивных самолетов, но и в отношении многотонных транспортных лайнеров, которые способны нести дополнительную полезную нагрузку. И вообще уж фантастическим, кажется полет вертолета, которые может не только двигаться по прямой линии, но и зависать на одном месте.

Полет летательных аппаратов стал возможен, благодаря совокупному использованию двух сил – подъемной, и силы тяги двигателей. И если с силой тяги все более или менее понятно, то с подъемной силой все обстоит несколько сложнее. Несмотря на то, что с этим выражением мы все хорошо знакомы, объяснить его может не каждый.

И так, какова природа появления подъемной силы?

Давайте внимательно посмотрим на крыло самолета, благодаря которому он и может держаться в воздухе. Снизу оно совершенно плоское, а сверху имеет сферическую форму, с выпуклостью наружу. Во время движения самолета воздушные потоки спокойно проходят под нижней частью крыла, не претерпевая каких — либо изменений. Но чтобы пройти над верхней поверхностью крыльев, воздушный поток должен сжаться. В результате мы получаем эффект продавленной трубы, сквозь которую должен пройти воздух.

Чтобы обогнуть сферическую поверхность крыла, воздуху понадобится больше времени, нежели при его прохождении под нижней, плоской поверхностью. По этой причине над крылом он движется быстрее, что, в свою очередь, приводит к возникновению разности давлений. Под крылом оно значительно больше, нежели над крылом, из-за чего и возникает подъемная сила. В данном случае действует закон Бернулли, с которым каждый из нас знаком со школьной скамьи. Самое главное в том, что разность давлений будет тем больше, чем выше скорость движения объекта. Вот и получается, что подъемная сила может возникать лишь при движении самолета. Она давит на крыло, заставляя его подниматься.

По мере разгона самолета по взлетной полосе, увеличивается и разность давлений, что приводит к возникновению подъемной силы. С набором скорости она постепенно растет, сравнивается с массой самолета, и как ее превысит, он взлетает. После набора высоты, пилоты уменьшают скорость, подъемная сила сравнивается с весом самолета, что заставляет его лететь в горизонтальной плоскости.

Чтобы самолет двигался вперед, его оснащают мощными двигателями, которые гонят воздушный поток в направлении крыльев. С их помощью можно регулировать интенсивность воздушного потока, а, следовательно, и силу тяги.

Высота полета – один из важнейших авиационных параметров. От нее зависят, в частности, скорость и расход топлива. Иногда от выбора высоты зависит и безопасность полета. Так, например, пилотам приходится менять высоту при резком изменении метеоусловий, из-за густого тумана, плотной облачности, обширного грозового фронта или турбулентной зоны.

Какой должна быть высота полета

В отличие от скорости самолета (когда чем быстрее, тем лучше), высота полета должна быть оптимальной. Причем у каждого типа самолетов она своя. Никому в голову не придет сравнивать высоты, на которых летают, к примеру, спортивные, пассажирские или многоцелевые боевые самолеты. И все же и здесь есть свои рекордсмены.


Первый рекорд высоты полета равнялся… трем метрам. Именно на такую высоту впервые поднялся самолет Wright Flyer братьев Уилбура и Орвилла Райт 17 декабря 1903 года. Спустя 74 года, 31 августа 1977 года советский летчик-испытатель Александр Федотов на истребителе МиГ-25 установил мировой рекорд высоты — 37650 метров. До настоящего времени она остается максимальной высотой полета истребителя.

На какой высоте летают пассажирские самолеты

Самолеты гражданских воздушных линий по праву составляют самую большую группу современной авиации. По данным на 2015 год в мире насчитывалось 21,6 тыс. многоместных летающих аппаратов, из которых треть – 7,4 тыс. – это крупные широкофюзеляжные пассажирские лайнеры.

При определении оптимальной высоты полета (эшелона) диспетчер или командир экипажа руководствуются следующим. Как известно, чем больше высота, тем более разряжен воздух и тем легче лететь самолету – поэтому есть смысл подняться выше. Однако крыльям самолета нужна опора, а на предельно большой высоте (например, в стратосфере) ее явно недостаточно, и машина начнет «заваливаться», а двигатели глохнуть.


Вывод напрашивается сам собой: командир (а сегодня и бортовой компьютер) выбирает «золотую середину» – идеальное соотношение силы трения и подъемной силы. В результате, у каждого типа пассажирских лайнеров (с учетом метеоусловий, технических характеристик, продолжительности и направления полета) своя оптимальная высота.

Почему самолеты летают на высоте 10000 метров?

В целом, высота полета гражданских самолетов варьируется в пределах от 10 до 12 тыс. метров при полете на запад и от 9 до 11 тыс. метров – на восток. 12 тыс. метров – это максимальная высота для пассажирских самолетов, выше которой двигатели начинают «задыхаться» от нехватки кислорода. Из-за этого высота 10000 метров считается наиболее оптимальной.


На какой высоте летают истребители

Высотные критерии истребителей несколько иные, что объясняется их предназначением: в зависимости от поставленной задачи вести боевые действия приходится на различных высотах. Техническая оснащенность современных истребителей позволяет им действовать в диапазоне от нескольких десятков метров до десятков километров.

Однако запредельные высоты у истребителей нынче «не в моде». И этому есть свое объяснение. Современные средства ПВО и ракеты истребителей класса «воздух-воздух» способны уничтожать цели на любых высотах. Поэтому главная проблема для истребителя – раньше обнаружить и уничтожить противника, а самому остаться незамеченным. Оптимальная высота полета истребителя 5-го поколения (практический потолок) – 20000 метров.

Почему летают птицы?

Крыло птицы устроено так, что создает силу, противодействующую силе тяжести. Ведь птичье крыло не плоское, как доска, а выгнутое . Это значит, что струя воздуха, огибающая крыло, должна пройти по верхней стороне более длинный путь, чем по вогнутой нижней. Чтобы оба воздушных потока достигли оконечности крыла одновременно, воздушный поток над крылом должен двигаться быстрее, чем под крылом. Поэтому скорость течения воздуха над крылом увеличивается, а давление уменьшается.

Разность давлений под крылом и над ним создает подъемную силу, направленную вверх и противодействующую силе тяжести.

Для кого-то актуально сейчас, для кого-то после - купить дешевый авиабилет онлайн. Это можно здесь! (Жмите на картинку!)

Зайдя на сайт, задайте направление, дату вылета (прилета), задайте количество билетов и вам компьютер автоматически выдаст таблицу с рейсами на данное число и на ближайшие рейсы, варианты, их стоимость.
Бронировать билет нужно, при возможности, как можно ранее и выкупать быстрее, пока действует бронь. Иначе, дешевые билеты "уплывут". Все подробности, узнать популярные направления с Украины, заказать авиа и ЖД билеты из любой точки в любую точку можно, зайдя по указанной картинке - на сайте по адресу http://711.ua/cheap-flights/.

Самолеты - очень сложные устройства, порой пугающие своей сложностью обывателей, людей, не знакомых с аэродинамикой.

Масса современных воздушных лайнеров может достигать 400 тонн, но они спокойно держатся в воздухе, быстро перемещаются и могут пересекать огромные расстояния.

Почему самолет летает?

Потому что у него, как и у птицы, есть крыло!

Если откажет двигатель - ничего страшного, самолет долетит на втором. Если отказали оба двигателя - история знает случаи, что и в таких обстоятельствах садились на посадку. Шасси? Ничего не мешает самолету сесть на брюхо, при соблюдении определенных мер пожарной безопасности он даже не загорится. Но самолет никогда не сможет лететь без крыла. Потому что именно оно создает подъемную силу.

Самолеты непрерывно "наезжают" на воздух своими крыльями, установленными под небольшим углом к вектору скорости воздушного потока. Этот угол в аэродинамике называется "угол атаки". "Угол атаки" - это угол наклона крыла к невидимому и абстрактному "вектору скорости потока". (см. рис 1)

Наука гласит, что самолет летает потому, что на нижней поверхности крыла создается зона повышенного давления, благодаря чему на крыле возникает аэродинамическая сила, направленная перпендикулярно крылу вверх. Для удобства понимания процесса полета, эту силу раскладывают по правилам векторной алгебры на две составляющие: силу аэродинамического сопротивления Х

(она направлена вдоль воздушного потока) и подъемную силу Y (перпендикулярную вектору скорости воздуха). (см. рис 2)

При создании самолета крылу уделяется огромное внимание, потому что именно от него будет зависеть безопасность выполнения полетов. Глядя в иллюминатор, пассажир замечает, что оно гнется и вот-вот сломается. Не бойтесь, оно выдерживает просто колоссальные нагрузки.

В полете и на земле у самолета крыло "чистое", оно имеет минимальное сопротивление воздуху и достаточную подъемную силу, чтобы удержать самолет на высоте, летящим на огромной скорости.

Но когда приходит время взлета или посадки, самолету нужно лететь как можно медленнее, чтобы с одной стороны не исчезла подъемная сила, а с другой колеса выдержали касание земли. Для этого площадь крыла увеличивается: выпускаются закрылки (плоскости в задней части) и предкрылки (в передней части крыла).

Если нужно еще уменьшить скорость, то в верхней части крыла выпускаются спойлеры, которые играют роль воздушного тормоза и уменьшают подъемную силу.

Самолет становится похож на ощетиневшегося зверя, медленно приближающегося к земле.

Все вместе: закрылки, предкрылки и спойлеры - называется механизацией крыла. Механизацию выпускают летчики вручную из кабины перед взлетом или посадкой.

На этот процесс задействуется, как правило, гидравлическая система (реже электрическая). Механизм выглядит очень интересно, и является в то же время очень надежным.

На крыле имеются рули (по-авиационному элероны), подобные корабельным (не зря самолет называется воздушным судном), которые отклоняются, наклоняя самолет в нужную сторону. Обычно они отклоняются синхронно на левой и правой стороне.

Также на крыле имеются аэронавигационные огни , которые предназначены для того, чтобы со стороны (с земли или другого самолета) было всегда видно, в какую сторону летит самолет. Дело в том, что слева всегда горит красный, а справа - зеленый. Иногда рядом с ними ставят белые "мигалки", которые очень хорошо видно ночью.

Большинство характеристик самолета напрямую зависит от крыла, его аэродинамического качества и других параметров. Внутри крыла расположены баки с топливом (от размеров крыла очень сильно зависит максимальный объем заправляемого топлива), на передней кромке ставятся электрические обогреватели, чтобы в дождь там не нарастал лед, в корневой части крепятся шасси...

Скорость самолета достигается при помощи силовой установки или турбины . За счет силовой установки, создающей силу тяги, самолет способен преодолевать сопротивление воздуха.

Самолеты летают по законам физики

В основе аэродинамики как науки заложена теорема Николая Егоровича Жуковского, выдающегося русского ученого, основателя аэродинамики, которая была сформулирована еще в 1904 году . Спустя год, в ноябре 1905 года Жуковский изложил свою теорию создания подъемной силы крыла летательного аппарата на заседании Математического общества.

Почему самолеты летают так высоко?

Высота полета современных реактивных самолетов находится в пределах от 5000 до 10000 метров над уровнем моря . Это объясняется очень просто: на такой высоте плотность воздуха намного меньше, а, следовательно, меньше и сопротивление воздуха. Самолеты летают на больших высотах, потому что при полете на высоте 10 километров самолет расходует на 80% меньше горючего, чем при полете на высоте в один километр.

Однако почему же тогда они не летают еще выше, в верхних слоях атмосферы, где плотность воздуха еще меньше?

Дело в том, что для создания необходимой тяги двигателем самолета необходим определенный минимальный запас воздуха . Поэтому у каждого самолета имеется наибольший безопасный предел высоты полета, называемый также «практический потолок». К примеру, практический потолок самолета Ту-154 составляет около 12100 метров.

Наверно, нет человека, который глядя, как летит самолёт, не задавался вопросом: «Как он это делает?»

Люди всегда мечтали летать. Первым воздухоплавателем попытавшимся взлететь с помощью крыльев, можно, наверное, считать Икара. Затем, на протяжении тысячелетий у него было множество последователей, но настоящий успех выпал на долю братьев Райт. Именно они считаются изобретателями самолёта.

Видя на земле огромные пассажирские лайнеры, двухэтажные Боинги, например, совершенно невозможно понять, как эта многотонная металлическая махина поднимается в воздух, настолько это кажется противоестественным. Мало того, даже люди, всю жизнь проработавшие в смежных с авиацией отраслях и, безусловно, знающие теорию воздухоплавания, иногда честно признаются, что не понимают, как летают самолёты. Но мы все же попробуем разобраться.

Самолёт держится в воздухе благодаря действующей на него «подъёмной силе», которая возникает только в движении, которое обеспечивают двигатели, закреплённые на крыльях или фюзеляже.

  • Реактивные двигатели выбрасывают назад струю продуктов сгорания керосина или другого авиационного топлива, толкая самолёт вперёд.
  • Лопасти винтового двигателя как бы ввинчиваются в воздух и тянут самолёт за собой.

Подъемная сила

Подъемная сила возникает, когда набегающий поток воздуха обтекает крыло. Благодаря особой форме сечения крыла, часть потока над крылом имеет большую скорость, чем поток под крылом. Это происходит потому, что верхняя поверхность крыла выпуклая, в отличие от плоской нижней. В итоге воздуху, обтекающему крыло сверху, приходится пройти больший путь, соответственно с большей скоростью. А чем больше скорость потока, тем меньше давление в нём, и наоборот. Чем меньше скорость - тем больше давление.

В 1838 году, когда ещё аэродинамики, как таковой, не существовало, швейцарский физик Даниил Бернулли описал это явление, сформулировав закон, названный по его имени. Бернулли, правда, описывал течение потоков жидкости, но с возникновением и развитием авиации, его открытие оказалось как нельзя более кстати. Давление под крылом превышает давление сверху и выталкивает крыло, а с ним и самолёт, вверх.

Другое слагаемое подъёмной силы - так называемый «угол атаки». Крыло располагается под острым углом к встречному потоку воздуха, благодаря чему давление под крылом выше, чем сверху.

С какой скоростью летают самолёты

Для возникновения подъёмной силы необходима определённая, и довольно высокая, скорость движения. Различают минимальную скорость, она необходима для отрыва от земли, максимальную, и крейсерскую, на которой самолёт летит большую часть маршрута, она составляет около 80% максимальной. Крейсерская скорость современных пассажирских лайнеров 850-950 км в час.

Ещё есть понятие путевой скорости, которая складывается из собственной скорости самолёта и скорости воздушных потоков, которые ему приходится преодолевать. Именно, исходя из неё, рассчитывают продолжительность рейса.

Скорость, необходимая для взлёта зависит от массы самолёта, и для современных пассажирских судов составляет от 180 до 280 км в час. Примерно на такой же скорости производится посадка.

Высота

Высота полёта тоже выбирается не произвольно, а определяется большим количеством факторов, соображениями экономии топлива и безопасности.

У поверхности земли воздух более плотный, соответственно, он оказывает большое сопротивление движению, вызывая повышенный расход топлива. С увеличением высоты воздух становится более разряжённым, и сопротивление уменьшается. Оптимальной высотой для полёта считается высота около 10 000 метров. Расход топлива при этом минимален.

Ещё одним существенным плюсом полётов на больших высотах является отсутствие здесь птиц, столкновения с которыми не раз приводили к катастрофам.

Подниматься выше 12 000-13 000 метров гражданские самолёты не могут, так как слишком сильное разряжение препятствует нормальной работе двигателей.

Управление самолётом

Управление самолётом осуществляется путём увеличения или уменьшения тяги двигателя. При этом изменяется скорость, соответственно подъёмная сила и высота полёта. Для боле тонкого управления процессами изменения высоты и поворотов служат средства механизации крыла и рули, находящиеся на хвостовом оперении.

Взлёт и посадка

Чтобы подъёмная сила стала достаточной, для отрыва самолёта от земли, он должен развить достаточную скорость. Для этого служат взлётно-посадочные полосы. Для тяжёлых пассажирских или транспортных самолётов нужны длинные ВПП, длиной 3-4 километра.

За состоянием полос тщательно следят аэродромные службы, поддерживая их в идеально чистом состоянии, так как инородные предметы, попадая в двигатель, могут привести к аварии, а снег и лёд на полосе представляют большую опасность при взлёте и посадке.

При разбеге самолёта наступает момент, после которого отменить взлёт уже нельзя, так как скорость становится настолько велика, что самолёт уже не сможет остановиться в пределах полосы. Это так и называется - «скорость принятия решения».

Посадка - очень ответственный момент полёта, лётчики постепенно сбрасывают скорость, вследствие чего уменьшается подъёмная сила и самолёт снижается. Перед самой землёй скорость уже такая низкая, что на крыльях выпускаются закрылки, которые несколько увеличивают подъёмную силу и позволяют мягко посадить самолёт.

Таким образом, как бы странно нам это не казалось, самолёты летают, причём в строгом соответствии с законами физики.