Классификация самолетов
в зависимости от выполняемых ими функций

Назначение самолетов определяется в основном конструкцией отдельных его фрагментов, общей сборкой, оборудованием, применяемом на самолете, а также летными, весовыми и геометрическими свойствами. Сайт отмечает, что в основном существует две большие группы самолетов – это военные и гражданские .

Военные самолеты участвуют в нанесении воздушных ударов по различным военным объектам, живой силе и технике, а также коммуникациям противника . Воздушные удары наносятся как в тылу противной стороны, так и в прифронтовой зоне. Кроме этого, военные самолеты служат для защиты своей живой силы и объектов от ударов с воздуха, а также для перевозки войск и техники, грузов и десанта. Иногда военные самолеты применяются в разведке и для связи «со своими». Военные самолеты, в свою очередь, делятся по назначению на несколько типов – бомбардировщики, истребители, истребители-бомбардировщики, самолеты-разведчики, военно-транспортные и вспомогательные самолеты.

Бомбардировщики наносят бомбовые удары по самым главным объектам противника, а также по узлам коммуникаций и местам, где наблюдается наибольшее количество живой силы и техники. В основном действие бомбардировщика происходит в тылу. Истребители служат для того, чтобы отбивать воздушные удары авиации противника. Они подразделяются на истребителей сопровождения (защита своих бомбардировщиков от авиаударов), фронтовых истребителей (защита своих войск над полем боя и недалеко от линии фронта), истребителей-перехватчиков (перехват и разрушение бомбардировщиков соперника). Истребители-бомбардировщики снабжены бомбами, ракетами и пушками. Они участвуют в нанесении ударов в передовой зоне и ближнем тылу, уничтожают воздушную армию противника.

Военно-транспортные самолеты применяются, когда необходимо перевести грузы, технику и войска. Самолеты-разведчики ведут разведку в тылу противоположной стороны, а вспомогательные самолеты осуществляют связные, корректировочные, санитарные и другие функции.

В отличие от военных, гражданские самолеты работают в области перевозки грузов, почты, пассажиров, а также применяются в некоторых отраслях народного хозяйства. Они могут быть разделены на несколько видов, также в зависимости от назначения. Пассажирские самолеты используются для перемещения пассажиров, различного багажа, а также почты . Они бывают магистральные, а также местных линий. Сайт отмечает, что разделение зависит от количества пассажиров, дальности воздушных перевозок, а также от размера взлетно-посадочных полос. Магистральные подразделяются на ближние, средние и дальние, и осуществляют перевозки на расстоянии от одной до одиннадцати тысяч километров. Самолеты местных линий включают в себя тяжелые, средние и легкие, и могут перевозить от пятидесяти пяти (максимум) до восьми (минимум) человек.

Гражданские самолеты также бывают грузовыми, они используются для перевозки грузов различного объема и тяжести. Самолеты специальные применяются в сельскохозяйственной, санитарной и полярной авиации. Кроме того, встречаются самолеты, принимающие участие в геологической разведке, для обеспечения сохранности лесов (от пожаров, например), и даже для аэрофотосъемок. Для подготовки пилотов существуют специальные учебные самолеты – они бывают первоначального обучения и переходные. В самолетах первоначального обучения существует всего два места, они достаточно легки в освоении и технике, используются для летчиков, первый раз севших «за штурвал». Переходные самолеты служат для того, чтобы обучить уже опытных пилотов полетам на серийных самолетах, уже используемых на различных авиалиниях.

Кроме назначения, существует также определение самолетов по схеме. Учитывается взаимное расположение, типы, формы, количество отдельных частей самолета. Например, самолеты различаются по количеству крыльев и их расположению, по тифу фюзеляжа, шасси и двигателей, а также по расположению оперения. Также встречаются смешанные схемы, одной из которых является лодка-амфибия. Расположение, тип и количество двигателей сильно влияет на схему и определяется в основном назначением самолета, о котором рассказывалось выше.

· оборудованием пассажирских мест удобными креслами, съемными столи-ками, индивидуальным освещением, вентиляцией и сигнализацией;

· хорошей звукоизоляцией кабин;

· выполнением полетов на высотах, где «болтанка» менее возможна;

· оборудованием пассажирских кабин буфетами , гардеробами, туалетами и другими бытовыми помещениями.

Особые требования предъявляются к грузовым самолетам. К числу таких требований относятся:

· большая грузоподъемность, увеличенные размеры грузовых отсеков;

· наличие средств крепления (швартовки) грузов;

· наличие внутрисамолетных средств механизации погрузки-разгрузки.

Многие из перечисленных требований находятся в противоречии друг с другом: улучшение одних характеристик влечет ухудшение других. Например, увеличение максимальной скорости полета вызывает увеличение посадочной скорости и ухудшение его маневренных свойств; выполнение требований прочности, жесткости и живучести входит в противоречие с требованием обеспечения минимальной массы конструкции; увеличение дальности полета достигается за счет снижения массы перевозимого груза и т. п. Невозможность одновременного выполнения противоречивых требований делает невозможным создание универсального самолета или вертолета . Каждый самолет или вертолет проектируется для выполнения конкретных задач.

3.2. Классификация самолетов, вертолетов и авиадвигателей

3.2.1. Классификация самолетов

Многообразие типов самолетов и их использование в народном хозяйстве обусловило необходимость классификации их по различным признакам.

Среди многочисленных признаков, по которым можно классифицировать самолет, наиболее важным является назначение. Этот признак определяет выбор летно-технических характеристик, размеры и компоновку самолета, состав оборудования на нем и пр.

Основное назначение гражданских самолетов – перевозка пассажиров, почты и грузов, выполнение различных народнохозяйственных задач. В соответствии с этим по назначению самолеты подразделяются на: транспорт-ные, специального назначения и учебные. В свою очередь, транспортные самолеты подразделяются на пассажирские и грузовые. По максимальной взлетной массе самолеты разбиваются на классы, табл. 3.1.

Таблица 3.1

Классы самолетов

Тип самолета

75 и более

Ил-96, Ил-86, Ил-76Т,

Ил-62, Ту-154, Ту-204

Ан-12, Ил-18, Ил-114, Ту-134, Як-42

Ан-24, Ан-26, Ан-30, Ил-14, Як-40

Ан-2, Л-410, М-15

Учебные самолеты служат для подготовки и тренировки летного состава в различных учебных заведениях гражданской авиации.

Самолеты специального назначения: сельскохозяйственные, санитарные, для охраны лесов от пожаров и вредителей, для аэрофотосъемочных работ и др.

По дальности полета самолеты подразделяются на магистральные дальние (свыше 6000 км), магистральные средние (от 2500 до 6000 км), магистральные ближние (от 1000 до 2500 км) и самолеты местных воздушных линий (до 1000 км).

Грузовые самолеты в отличие от пассажирских имеют большие внутренние объемы в фюзеляже, позволяющие размещать различные грузы, более прочный пол, оснащены средствами механизации погрузо-разгрузочных работ.

Классификация самолетов приведена на рис. 3.1. Из всего многообразия конструктивных признаков выделены основные: количество и расположение крыльев; тип фюзеляжа; тип двигателей, их количество и расположение; тип шасси; тип и расположение оперения.

Рис. 3.1. Классификация самолетов

Рассмотрим особенности схем самолетов, обусловленные количеством и расположением крыльев.

По количеству крыльев самолеты подразделяются на монопланы, то есть самолеты с одним крылом, и бипланы – самолет с двумя крыльями, распо-ложенными одно над другим. Достоинством бипланов является лучшая, по сравнению с монопланом, маневренность, благодаря тому, что при равной площади крыльев размах их у биплана оказывается меньшим. Однако в следствие большого лобового сопротивления из-за наличия межкрыльевых стоек и расчалок, скорость полета биплана невелика. В настоящее время в гражданской авиации эксплуатируется самолет – биплан Ан-2.

Большинство современных самолетов выполнено по схеме моноплана.

По расположению крыла относительно фюзеляжа различают низкопланы, среднепланы и высокопланы. Каждая из этих схем имеет свои достоинства и недостатки.

Низкоплан – самолет с нижним расположением крыла относительно фюзеляжа. Именно такая схема получила наибольшее распространение для пассажирских самолетов, благодаря следующим ее достоинствам:

· небольшая высота стоек шасси, что уменьшает их вес, упрощает уборку и уменьшает объемы отсеков для размещения шасси;

· удобство обслуживания авиадвигателей при размещении их на крыле;

· при аварийной посадке на воду обеспечивается хорошая плавучесть;

· при аварийной посадке с невыпущенными шасси приземление происхо-дит на крыло, что создает меньше опасности для пассажиров и экипажа.


Недостатком такой схемы является то, что в зоне стыка крыла и фюзеляжа нарушается плавность отсекания воздуха и возникает дополнительное сопротивление, называемое интерференцией, и обусловленное взаимным влиянием крыла на фюзеляж. Кроме того, на низкоплане трудно защитить двигатели, расположенные на крыле и под крылом, от попадания пыли и грязи с взлетно-посадочной полосы аэродрома.

Среднеплан – самолет, у которого крыло расположено примерно по середине высоты фюзеляжа. Основное преимущество такой схемы – минимальное аэродинамическое сопротивление.

К недостаткам схемы относится трудность с размещением пассажиров, грузов и оборудования в средней части фюзеляжа в связи с необходимостью пропускать здесь продольные силовые элементы крыла.

Высокоплан – самолет, у которого крыло крепится к верхней части фюзеляжа.

Основные преимущества высокоплана:

· малая интерференция между крылом и фюзеляжем;

· размещение двигателей высоко от поверхности взлетно-посадочной полосы. Что уменьшает вероятность их повреждения при рулении по земле;

· хороший обзор нижней полусферы;

· возможность максимального использования внутренних объемов фюзеляжа, оборудования его средствами механизации загрузки и выгрузки крупногабаритных грузов.

К недостаткам схемы относятся:

· трудность уборки шасси в крыло;

· сложность обслуживания двигателей, расположенных на крыле;

· необходимость усиления конструкции нижней части фюзеляжа.

· По типу фюзеляжа самолеты разделяются на однофюзеляжные, двухбалочные с гондолой и «летающее крыло».

· Большинство современных самолетов имеет один фюзеляж, к которому крепятся крыло и хвостовое оперение.

· В зависимости от типа и расположения оперения различают три основные схемы:

· заднее расположение оперения;

· переднее расположение оперения (самолет типа «утка»);

· бесхвостые самолеты типа «летающее крыло».

Большинство современных гражданских самолетов выполнено по схеме с хвостовым оперением. Эта схема имеет следующие разновидности:

· центральное расположение вертикального киля и горизонтальное расположение стабилизатора;

· разнесенное вертикальное оперение;

· V – образное оперение без вертикального киля.

По типу шасси самолеты подразделяются на сухопутные и гидросамолеты. Шасси у сухопутных самолетов, как правило, колесное, иногда – лыжное, а у гидросамолетов – лодочное или поплавковое.

Самолеты различают также по типу, числу и расположению двигателей. На современных самолетах применяются поршневые (ПД), турбовинтовые (ТВД) и турбореактивные (ТРД) двигатели.

Расположение двигателей на самолете зависит от их типа, количества, габа-ритов и назначения самолета.

У многомоторных самолетов двигатели с воздушными винтами устанав-ливаются в гондолах перед крылом.

Турбореактивные двигатели располагаются чаще всего на пилонах под крылом или в хвостовой части фюзеляжа.

Достоинства первого способа: непосредственное размещение двигателей в потоке воздуха, разгрузка крыла от изгибающих и крутящих моментов, удобство обслуживания двигателей. Однако близкое от земли расположение двигателей связано с опасностью попадания в них посторонних предметов с поверхности ВПП. На самолетах с таким расположением двигателей создаются также трудности в пилотировании с одним отказавшим двигателем (полет с несимметричной тягой).

При втором способе основными достоинствами являются следующие:

· чистое от надстроек крыло имеет лучшие аэродинамические характе-ристики (имеется больше места для размещения средств механизации крыла);

· не возникает сложностей при полете с нессиметричной тягой;

· уменьшается уровень шума в кабинах самолета;

· крыло защищает двигатели от грязи при движении самолета по земле;

· обеспечивается удобное обслуживание двигателей.

Однако такая схема размещения двигателей имеет и серьезные недостатки:

· горизонтальное оперение необходимо переносить вверх и усиливать киль;

· фюзеляж в зоне расположения двигателей необходимо усиливать;

· центровка самолета по мере выгорания топлива перемещается назад, уменьшая устойчивость самолета.

3.2.2. Классификация вертолетов

Классифицируются вертолеты по различным признакам, например, по величине максимальной взлетной массы (табл. 3.2), по виду привода несущего винта, количеству и расположению несущих винтов или способу компенсации реактивного момента этих винтов.

Таблица 3.2

Классы вертолетов

Максимальная взлетная масса, т

Тип вертолета

10 и более

Ми-6, Ми-10К, Ми-26

Ми-4, Ми-8, Ка-32

Ка-15, Ка-18

У большинства современных вертолетов несущий винт приводится во вращение через трансмиссию от двигателей. Несущий винт при вращении испытывает действие реактивного момента Мреакт, являющегося реакцией воздуха и равного Мкр – крутящему моменту на валу несущего винта. Этот момент стремится вращать фюзеляж вертолета в сторону, противоположную вращению винта. Способ уравновешивания реактивного момента крутящего винта в основном определяет схему вертолета.

Одновинтовая схема вертолета в настоящее время является наиболее распространенной. Вертолеты такой схемы имеют рулевой винт, который выносится на длинной хвостовой балке за плоскость вращения несущего винта. Тяга, создаваемая рулевым винтом, позволяет уравновесить реактивный крутящий момент несущего винта. Изменяя величину тяги рулевого винта, можно осуществлять путевое управление, то есть поворот вертолета относительно вертикальной оси.

Вертолеты одновинтовой схемы проще других в изготовлении и эксплуатации и поэтому позволяют получить относительно меньшую стоимость летного часа. Такие вертолеты компактны, имеют мало выступающих в поток частей и позволяют достигать большей чем при других схемах скорости полета. Иногда для увеличения скорости на таких вертолетах может устанавливаться крыло. При подлете с горизонтальной скоростью на крыле создается подъемная сила, в результате чего несущий винт частично разгружается.

Затраты мощности (8…10%) двигателя на привод рулевого винта, а также наличие длинной хвостовой балки и несущего винта большого диаметра, увели-чивающих габариты вертолета, являются недостатками данной схемы.

У вертолетов двухвинтовой схемы уравновешивание реактивного крутящего момента достигается сообщением винтам противоположного вращения. Двухвинтовые вертолеты могут иметь различное расположение несущих винтов.

При соосной схеме вал верхнего несущего винта проходит через полый вал нижнего. Плоскости вращения винтов удалены друг от друга на такое расстояние, что бы исключить столкновение между лопастями верхнего и нижнего винтов на всех режимах полета.

Путевое управление вертолета соосной схемы обеспечивается за счет установки лопастей верхнего и нижнего винтов на разные углы атаки. Возникающая при этом разность крутящих моментов на несущих винтах вызывает поворот вертолета в требуемую сторону. Иногда для улучшения путевого управления такие вертолеты снабжают рулями поворота, действие которых подобно действию аналогичных рулей на самолете. Продольное и поперечное управление осуществляется одновременным наклоном плоскостей вращения обоих несущих винтов.

Вертолеты с соосными винтами наиболее компактны и маневренны, имеют высокую весовую отдачу. Однако сложность конструкции удорожает их произ-водство и вызывает трудности при эксплуатации, особенно в регулировке несущей системы.

При продольной схеме несущие винты устанавливаются на концах фюзеляжа. Винты, вращающиеся в противоположные стороны, синхронизи-рованы так, что лопасти одного винта при вращении всегда проходят между лопастями другого.

Достоинством вертолетов такой схемы является длинный, емкий фюзеляж, внутри которого можно перевозить крупногабаритные грузы. В остальном они уступают вертолетам одновинтовой схемы.

Вертолеты поперечной схемы имеют два несущих винта, расположенных в одной плоскости по бокам фюзеляжа и вращающихся в противоположные стороны. С точки зрения аэродинамики такая схема расположения несущих винтов является наиболее целесообразной, но крылья, воспринимающие нагрузки от несущих винтов, значительно утяжеляют конструкцию вертолета.

3.2.3. Классификация авиадвигателей

Силовая установка предназначена для создания тяги. Она включает в себя двигатели, воздушные винты, гондолы двигателей, топливную и масляную системы, системы управления двигателями и винтами и др.

В зависимости от конструктивной схемы и характера рабочего процесса двигатели классифицируются на поршневые (ПД) и газотурбинные (ГТД). В свою очередь газотурбинные двигатели подразделяются на: турбореактивные (ТРД), турбовинтовые (ТВД), двухконтурные турбореактивные (ДТРД) и турбо-вентиляторные, рис. 3.2.

Рис. 3.2. Классификация авиационных двигателей

ТРД имеют малую массу, компактные и надежные, поэтому занимают доминирующее положение на магистральных самолетах.

ТВД по сравнению с турбореактивными имеют более высокую топливную эффективность, однако их конструкция существенно утяжелена и усложнена воздушным винтом, вызывающим к тому же дополнительные шумы и вибрации. ТВД устанавливают на крыле и в носовой части фюзеляжа. Наличие воздушного винта на ТВД ограничивает другие варианты их расположения на самолете.

ТРД устанавливают на крыле, под крылом на пилонах, внутри фюзеляжа, по его бортам в хвостовой части. Каждая схема размещения имеет свои преимущества и недостатки и выбирается с учетом типа и числа двигателей, аэродинамических, прочностных, массовых и других особенностей самолетов, условия их эксплуатации.

Поршневые двигатели работают на авиационном бензине марок Б-70 и Б-95/130. Тепловая энергия сгоревшего в цилиндрах топлива преобразуется в механическую и передается воздушному винту, который создает необходимую для полета тягу. Газотурбинные двигатели работают на авиационном керосине марок Т-1, ТС-1, РТ-1 и др.

Вопросы для самоконтроля

1. Что такое «безопасность полетов» и чем она обеспечивается?

2. Чем достигается «экономичность эксплуатации»?

3. По каким направлениям обеспечивается «комфорт пассажиров»?

4. По каким признакам и критериям классифицируются самолеты? Недостатки и преимущества различных конструктивных схем самолетов.


5. Классификация вертолетов. Каковы преимущества и недостатки различных конструктивных схем вертолетов?

6. Дайте классификацию авиационных двигателей.

ГЛАВА 4

АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

САМОЛЕТОВ

Аэрогидромеханика (механика жидкости и газа) – наука, изучающая законы движения и равновесия жидкостей и газов и их силового взаимодействия с обтекаемыми телами и граничными поверхностями. Механика жидкого тела называется гидромеханикой , механика газообразного тела – аэромеханикой .

Развитие воздухоплавания, авиации и ракетостроения вызывало особый интерес к исследованиям силового взаимодействия воздуха и других газообразных сред с движущимися в них телами (крылом самолёта, фюзеляжем, винтом, дирижаблем, ракетами и др.).

Проектирование и расчёт самолетов (вертолетов) основываются на результатах, полученных при аэродинамических исследованиях. С учетом аэродинамики можно выбрать рациональную внешнюю форму самолета (принимая во внимание взаимное влияние его частей) и установить допустимые отклонения во внешней форме, размерах и т. д. при производстве.

Для аэродинамического расчета самолета, т. е. для определения возможного диапазона скоростей, высоты и дальности полета, а также для определения таких характеристик, как устойчивость и управляемость самолета, необходимо знать силы и моменты, действующие на самолет в полете. Для расчета летательного аппарата на прочность, надежность и долговечность необходимо знать величины и распределение аэродинамических сил по поверхности летательного аппарата. Ответ на эти вопросы дает аэродинамика .

Очень важным является определение аэродинамических характеристик летательного аппарата и его частей при полете со сверхзвуковыми скоростями, так как в этом случае возникает дополнительная задача определения температуры на поверхности обтекаемого тела и теплообмена между телом и средой.

Аэродинамика играет большую роль не только при проектировании и расчете самолета (вертолета), но и при его летных испытаниях. С помощью данных аэродинамики и летных испытаний устанавливают допустимые для самолета величины деформаций, скоростей, а также режимы полета, при которых имеют место вибрации, тряска самолета и т. д.

Согласно принципу механического взаимодействия нескольких движущихся тел силы, действующие на тела, зависят от их относительного движения. Суть относительного движения заключается в следующем: если в неподвижной воздушной среде тело (например, самолет в воздухе) движется прямолинейно и равномерно со скоростью V∞, то при одновременном сообщении среде и самолету обратной скорости V∞ получается так называемое «обращённое» движение, т. е. на неподвижное тело набегает воздушный поток (например, поток воздуха в аэродинамической трубе на неподвижную модель самолета), при этом скорость невозмущенного потока равна V∞. И в том, и в другом случае уравнения, описывающие относительное движение самолета и воздуха, будут инвариантными. Таким образом, аэродинамические силы зависят только от относительного движения тела и воздуха.

Для определения аэродинамических характеристик тел (например, крыла, фюзеляжа и других частей летательного аппарата), обтекаемых воздушным потоком, в настоящее время используется синтез теоретических и экспери-ментальных методов: теоретические расчеты с введением экспериментальных поправок или экспериментальные исследования с учетом теоретических поправок (на влияние вариации критериев подобия, граничных условий и т. д.). И в том, и в другом случаях для расчетов и обработки экспериментальных данных широко используются ЭЦВМ. После создания летательного аппарата завершающим этапом являются летные испытания – эксперимент в натурных условиях. Непосредственно измерить аэродинамические силы (как, например, в аэродинамических трубах) при летных испытаниях затруднительно. Аэродинамические характеристики определяются путем обработки измеренных во время испытаний параметров движения летательного аппарата относительно воздуха. Для получения достаточного количества опытных данных полеты производятся на различных режимах.

Аэродинамика подразделяется на два раздела: аэродинамику малых скоростей и аэродинамику больших скоростей. Принципиальное различие этих разделов состоит в следующем. Когда скорости течения газа невелики по сравнению со скоростью распространения звука, при аэродинамических расчетах газ считается практически несжимаемым и изменения плотности и температуры газа внутри потока не учитываются. При скоростях, соизмеримых со скоростью звука, явлением сжимаемости газа пренебречь нельзя.

Задача аэродинамики – определение аэродинамических сил, от которых зависят летные данные летательных аппаратов.

Аэродинамика как наука развивается в двух направлениях: экспериментальном и теоретическом. Теоретическая аэродинамика находит решения путём анализа основных законов гидроаэродинамики. Однако из-за сложности процессов, происходящих при обтекании тел потоком воздуха, решения при этом получаются приближенными и требуют экспериментальной проверки. Экспериментальные аэродинамические исследования проводятся в аэродинамических трубах или непосредственно в ходе летных испытаний летательных аппаратов. Летные испытания позволяют получить наиболее достоверные результаты. Они проводятся, как правило, уже после того, как проведены испытания в аэродинамических трубах.

Аэродинамическими трубами называются устройства, в которых искус-ственно создается воздушный поток, обдувающий изучаемые тела.

На рис. 4.1 показана схема аэродинамической трубы. Вентилятор – 2 приво-дится во вращение электродвигателем – 1, позволяющим менять обороты вентилятора и скорость воздушного потока. Воздух, всасываемый венти-лятором, пройдя через обратный канал – 4, поступает через сужающееся сопло – 7 в рабочую часть – 6, где помещается испытуемая модель – 5. Для потерь энергии воздуха и предотвращения появления вихрей при поворотах потока служат направляющие лопатки – 9, а для создания равномерного потока в рабочей зоне – спрямляющая решетка – 8. Расширяющийся диффузор - 3 уменьшает скорость и соответственно повышает давление воздушного потока, что позволяет уменьшить энергию, необходимую для вращения вентилятора.

Рис. 4.1. Схема аэродинамической трубы: 1 – электродвигатель; 2 – венти-лятор; 3 – диффузор; 4 – обратный канал; 5 – испытуемая модель; 6 – рабочая часть аэродинамической трубы; 7 – сопло; 8 – спрямляющая решетка; 9 – на-правляющие лопатки

Для определения аэродинамических сил, действующих на испытываемую модель, применяются аэродинамические весы. Давление на различных участках поверхности модели измеряются через специальные отверстия, соединенные с манометрами.

4.2. Характеристика воздушной среды

Атмосферой называется газообразная оболочка, окружающая земной шар и вращающаяся вместе с ним. Верхняя часть атмосферы состоит из ионизиро-ванных частиц, захваченных магнитным полем Земли. Атмосфера плавно переходит в космическое пространство и её точную высоту установить трудно. Условно высота атмосферы принимается равной 2500 км: на этой высоте плотность воздуха близка к плотности космического пространства. Исследование состояния атмосферы представляет большой интерес для авиации, так как от свойств атмосферы зависят летно-технические характе-ристики летательных аппаратов. Особенно большое влияние на летные качес-тва самолетов оказывают метеорологические условия.

С увеличением высоты падают давление и плотность воздуха. Параметры атмосферного воздуха зависят от координат места и изменяются с течением времени в определенных пределах. Значительное воздействие на состояние атмосферы оказывает солнечное излучение. Атмосфера находится в непрерывном взаимодействии с космосом и землей.

Атмосфера состоит из нескольких слоев: тропосферы, стратосферы, химосферы, ионосферы, мезосферы и экзосферы, каждый их которых характеризуется различным изменением температуры в зависимости от высоты.

В тропосфере температура уменьшается с высотой в среднем на 6,5оС через каждые 1000 м. В стратосфере температура остается почти постоянной. В химосфере теплый слой воздуха лежит между двумя холодными слоями, поэтому там существуют два температурных градиента: внизу в среднем +4оС на 1000 м, а вверху - 4,5оС на 1000 м. В ионосфере температура возрастает с высотой в среднем на 10оС через каждые 1000 м. В мезосфере температура уменьшается в среднем на 3оС через каждые 1000 м.

Все слои отделяются друг от друга зонами толщиной 1…2 км, называемыми паузами: тропопаузой, стратопаузой, химопаузой, ионопаузой, мезопаузой.

Наибольший интерес для авиации в настоящее время представляют нижние слои атмосферы, в частности, тропосфера и стратосфера.

Многолетние наблюдения состояния атмосферы в различных местах земного шара показали, что значения температуры, давления и плотности воздуха изменяются в зависимости от времени и координат в весьма широких пределах, что не позволяет точно предсказывать состояние атмосферы в мо-мент полета. Например, в Сибири температура воздуха зимой на уровне океана иногда достигает 2130 К, а летом 3030 К, т. е. в течение года она изменяется на 900К. В средних широтах температура изменяется примерно на 700К. В изме-нениях температуры на различных высотах также наблюдаются значительные колебания.

Значителен диапазон колебаний давления: в средних широтах на уровне океана оно изменяется от 1,04 до 0,93 бар (1 бар = 105 Н/м2). Соответственно изменяется и плотность воздуха (в пределах ±10%).

Отсутствие определенности в состоянии атмосферы у Земли и в изменении ее состояния с увеличением высоты создает серьезные затруднения при аэроди-намических расчетах летных характеристик самолетов, которые, как уже отме-чалось, существенно зависят от состояния атмосферы. Необходимость унифи-кации расчетов, связанных с летательными аппаратами, при решении прак-тических задач, например, единообразное градуирование различных летных приборов (измерители скорости, махометры и т. п.), пересчет летных характе-ристик самолетов, полученных в конкретных атмосферных условиях, на другие привела к созданию условных характеристик атмосферы – стандартов. Такие характеристики были введены в форме условной стандартной атмосферы (СА), которая имеет вид таблицы численных значений физических параметров атмосферы для ряда высот.

4.3. Общие сведения о законах аэродинамики

Аэродинамика дает качественное объяснение природы возникновения аэро-динамических сил и с помощью специальных уравнений позволяет получить их количественную оценку.

При изучении движения газов исходят из предположения, что эти среды являются сложными с непрерывным распределением вещества в пространстве. Поток газа (в дальнейшем – воздуха) в аэродинамике принято представлять в виде отдельных элементарных струек – замкнутых контуров в виде трубок, через боковую поверхность которых воздух перетекать не может, рис. 4.2. Если в любой точке пространства скорость, давления и другие характерные величи-ны постоянны по времени, то такое движение называется установившимся.

Применим к течению воздуха в струйке два наиболее общих закона приро-ды: закон сохранения массы и закон сохранения энергии.

Для случая установившегося движения закон сохранения массы сводится к тому, что через каждое поперечное сечение струйки в единицу времени проте-кает одна и таже масса воздуха, то есть:

ρ1f1V1= ρ2f2V2=const,

где: ρ – массовая плотность воздуха в соответствующих сечениях струйки;

f – площадь сечения струйки;

V – скорость воздуха.

Это уравнение называется уравнением неразрывности струи.

Произведение ρfV представляет собой секундный массовый расход возду-ха, проходящего через каждое поперечное сечение струйки.

Для малых скоростей течения (М < 0,3), когда сжимаемостью воздуха мож-но пренебречь, то есть когда ρ1 = ρ2 = const, уравнение неразрывности прини-мает вид:

f1V1= f2V2=const.

Из этого уравнения видно, что при М < 0,3 скорость течения в струйке обратно пропорциональна площади ее поперечного сечения.

По мере увеличения скорости она начинает все заметнее влиять на изменение плотности. Например, при скоростях, соответствующих М > 1, рост скорости возможен лишь при увеличении площади поперечного сечения струйки.

https://pandia.ru/text/78/049/images/image012_75.gif" width="29" height="38 src=">, а потенциальная энергия, равная работе силы тяжести относительно некоторого условного уровня, – mgh1. Помимо этого воздух, находящийся выше первого сечения, производит работу, продвигая находя-щуюся впереди массу воздуха. Эта работа определяется как произведение силы давления P1f1 на путь V1Δτ. Таким образом, энергия воздуха, передаваемая за время Δτ через сечение I-I, составит:

Таким образом, на основании уравнения Бернулли можно сделать вывод, что при установившемся движении сумма статического давления и динамичес-кого давления есть величина постоянная.

Авиационная индустрия развивается с каждым годом. Сегодня гражданские и военные пилоты используют модели лайнеров всяческих конфигураций и разновидностей. Летательные аппараты поражают разнообразием и вариациями назначения. Кратко изучим виды самолетов и их названия, чтобы классифицировать для себя этот вид техники.

В мире известно несколько отдельных критериев, по которым специалисты авиационного дела классифицируют различные борта. Одним из важных аспектов систематизации техники становится функция, которую несет летательный аппарат . Сегодня используют военные и гражданские суда. Причем каждая категория подразделяется на специальные группы.

Кроме того, известно и разделение по скоростным характеристикам лайнера . Здесь авиаторы перечисляют группы дозвуковых, трансзвуковых, сверхзвуковых и гиперзвуковых моделей. Этот раздел классификации основан на определении ускорения лайнера относительно скорости звука. Воздушная техника, которая , сегодня используется в научных и военных целях, хотя ранее подобные модели работали и для пассажирских перевозок.

Если говорить о способе управления, тут удастся выделить два основных типа – пилотируемые борта и беспилотники. Вторая группа получила применение у военных и ученых. Такие машины широко используют для исследования космоса.

Рассматривая типы и назначение воздушных машин, авиаторы назовут и классификацию по конструктивным особенностям аппарата . Здесь перечислим различия по аэродинамической модели, числу и виду крыла, форме оперения хвостовой части, устройству фюзеляжа. К последней подгруппе относят и разновидности, которые касаются типов и крепления шасси.

Наконец, рассматривают и различия по виду, количеству и способу установки двигателей . Тут выделяют мускульные, паровые, воздушно-реактивные, ракетные, ядерные, электрические моторы. Кроме того, суда оснащают и двигателями внутреннего сгорания (поршневые модификации силовых установок) или же комбинируют несколько вариаций. Конечно, в одном обзоре сложно подробно рассмотреть полную классификацию летательных аппаратов, поэтому остановимся на краткой характеристике основных категорий.

Функциональность техники

Как указано выше, авиалайнеры делятся на две главных группы: борта для гражданской и военной авиации. Кроме того, отдельной разновидностью тут выделяют экспериментальные аппараты. Каждая категория тут предполагает деление на вариации по типу назначения и функциональности лайнера. Начнем с изучения воздушных судов, которые используют в «мирных» целях.

Гражданские борта

Подробнее определим, какие самолеты бывают, названия и подвиды летательных модификаций. Здесь авиаторы говорят о четырех вариантах моделей. Перечислим категории таким перечнем:

  • пассажирские лайнеры;
  • грузовые борта;
  • учебные аэробусы;
  • самолеты специального назначения.

Отметим, что модификации для пассажирских перевозок отдельно разделяют на группы, которые определяют дальность перелетов. Тут называют магистральные суда и авиалайнеры местных перевозок.

Классификация самолетов

  • ближние, которые преодолевают дистанции до 2 000 км;
  • средние, способные пролететь 4 000 км;
  • дальние, выполняющие рейсы на расстояние до 11 000 км.

К тому же максимальный показатель вместимости определяет такие критерии для авиалайнеров местных линий:

  • тяжелый самолет, где предусмотрено 100 и более посадочных мест;
  • средние модификации, которые поднимают на борт до 50 человек;
  • легкие лайнеры, перевозящие максимум 20 пассажиров.

Среди примеров самолетов местных линий перечислим модификации SAAB , ERJ , Dash-8 , ATR . Интересно, что на отдельных типах лайнеров местной категории оборудуют силовые установки разного класса. Тут встречаются модели с реактивными двигателями и самолеты с турбовинтовыми типами мотора.

Рассматривая магистральные самолеты , назовем знакомые пассажирам суда Boeing и Airbus . Самолеты Боинг конструирует американская корпорация, а суда Аэробус – европейский холдинг. Обе компании конкурируют между собой, постоянно развивая и модернизируя лайнеры. Так, сегодня наиболее тяжелым самолетом считают Airbus A380, хотя вплоть до выпуска такой модификации лидировали американские разработки и 747 800 .

Модели 747 – первые летательные аппараты широкофюзеляжного класса, которые функционируют и сегодня. Кроме того, такую летательную технику используют лучшие перевозчики России и мира.

Однако европейцы не отстают от главного конкурента. Популярность и признание пилотов завоевали модификации , Аэробус А300 и А350 XWB . Модель А300 – первый в мире широкофюзеляжный борт, который оборудован двумя двигателями. Как видите, вероятные вариации классификации лайнеров не поддается описанию в одном обзоре. Но зная, какие бывают самолеты и кто их создал, читатель определится с личными предпочтениями и выяснит азы авиационного дела.

Военная авиация

Теперь кратко изучим типологию судов, используемых силовыми структурами. Среди этих самолетов встречаются пилотируемые лайнеры и беспилотники, модификации с различным типом мотора, в том числе и ракетные подвиды двигателя. Однако мы рассмотрим деление этих видов по профильным критериям.

Военный транспортный борт Ил-76

Здесь, как и в гражданской классификации, есть транспортные лайнеры , осуществляющие перевозки личного состава. Это Ил-76 , Ан-12, 26 и 124 . В США эти функции несут модели Boeing C-17, 97 и Douglas YC-15 . Кроме того, военные тоже используют вспомогательную технику – санитарные летательные аппараты, лайнеры для связи, корректировщики. Однако военные разработки бортов используют и несколько категорий машин, которые встречаются только здесь. Их список выглядит следующим образом:

Как видите, категория военных бортов достаточно обширна и заслуживает серьезного изучения. Мы лишь кратко описали главные критерии систематизации подобной группы. Однако авиационные эксперты предпочитают классифицировать борта, используя комплексное исследование, которое включает полное описание конструкции бортов. Остановимся и на этом вопросе.

О конструктивных особенностях

Принадлежность к конкретной категории лайнера определяют пять признаков. Здесь конструкторы говорят о числе и способу крепления крыльев, разновидности фюзеляжа, расположению оперения и виде шасси. Кроме того, значение имеет количество, место фиксации и виды мотора. Выясним известные вариации конструкции бортов.

Различия по конструктивным особенностям — важный критерий при систематизации авиалайнеров

Если рассматривать классификацию крыла, тут лайнеры делятся на полипланы, бипланы и монопланы . Причем в последней категории различают еще три подвида: низкоплановые, среднеплановые и высокоплановые борта. Этот критерий определяет взаимное положение и фиксация фюзеляжа и крыльев. Что касается типологии фюзеляжа, здесь авиаторы выделяют однофюзеляжные и двухбалочные модификации. Тут же встречаются и такие разновидности: гондола, лодка, несущий фюзеляж и комбинации этих типов.

Аэродинамические показатели – важный критерий классификации, поскольку влияют на . Тут конструкторы называют типы нормальной схемы, «утку», «бесхвостку» и «летающее крыло». Кроме того, известен «тандем», «продольный триплан» и конвертируемая схема.

Шасси авиалайнеров систематизируют по конструкции и способу фиксации опор. Эти элементы делятся на роликовые, поплавковые, гусеничные, комбинированные виды и шасси на воздушной опоре. Двигатели оборудуют на крыле или в фюзеляже. Причем лайнеры оснащены одним мотором или большим числом двигателей. Кроме того, решающую роль при систематизации класса борта играет и тип силовой установки.

Беспилотные летательные аппараты нашли применение в научной и военной сфере

Современная авиация насчитывает несколько видов лайнеров, которые классифицируются по различным признакам
По назначению самолеты разделяют на гражданские, военные и экспериментальные борта
Классификация самолетов
Аэробус А380 — гигант в мире пассажирских лайнеров
Самолеты Boeing — основной конкурент в сфере пассажирских перевозок европейского холдинга, который выпускает Аэробусы

Для выполнения воинских воздушных перевозок используются различные транспортные самолеты и вертолеты военной и граждан­ской авиации.

С точки зрения перевозок транспортные самолеты и вертолеты можно классифицировать по назначению, грузоподъемности и типу установленных двигателей.

По назначению транспортные самолеты (вертолеты) подразде­ляются на пассажирские, грузовые и грузопассажирские.

Пассажирские самолеты предназначены в первую очередь для перевозок пассажиров, багажа и почты, для чего они имеют со­ответствующее бытовое оборудование, обеспечивающее удобства и комфорт пассажирам. Перевозки в них грузов можно производить в небольших количествах в багажниках, расположенных под полом пассажирской кабины.

Пассажирские самолеты гражданской авиации в зависимости от пассажировместимости, дальности полета и класса используемых аэродромов подразделяются на магистральные и самолеты местных воздушных линий.

Магистральные самолеты в свою очередь делятся на дальние (ДМС), средние (CMC) и ближние (ВМС).

К ДМС относятся: Ил-62, Ту-114 и первый сверхзвуковой пасса­жирский самолет Ту-144.

К CMC -Ту-154, Ту-104, Ан -10, Ил-18.

К ВМС - Ту-134, Ту-124.

К самолетам местных -воздушных линий относятся: Ан-24, Як-40, Бе-30, Ан-2.

Грузовые самолеты предназначены для перевозки грузов и техники, имеют специальное оборудование, обеспечивающее погрузку грузов и их крепление, а также необходимые климатические ус­ловия внутри грузовой кабины во время полета. В случае необходи­мости они могут оборудоваться съемными сиденьями для перевозки людей.

К грузовым самолетам относятся: Ан-24т, Ан-12, Ан-22 и верто­леты Ми-4А, Ми-8, Ми-6, Ми-10.

Грузопассажирские самолеты предназначены для перевозки пассажиров и грузов. В грузопассажирских самолетах имеются отдельные помещения для пассажиров (обычно верхний этаж) и грузов (обычно нижний этаж) или пассажирское оборудо­вание кабины выполняется легкосъемным, что позволяет в случае необходимости быстро приспособить самолет (вертолет) к комбини­рованной или чисто грузовой перевозке. Самолеты, приспособлен­ные к -быстрому переоборудованию из пассажирского в грузовой ва­риант, называются конвертируемыми самолетами.

По грузоподъемности транспортные самолеты и вертолеты подразделяются на легкие, с нормальной десантной нагрузкой до 11 т, - средние - до 20 т и тяжелые - более 20 т.

Легкие самолеты и вертолеты в работе органов военных сообще­ний используются сравнительно мало - лишь для выполнения от­дельных небольших перевозок или в условиях, когда в районе вы­грузки нет аэродромов, пригодных для посадки самолетов средней грузоподъемности.



Для воинских перевозок в настоящее время наиболее -широко используются средние самолеты: грузовые типа Ан-12 и пассажир­ские типов Ил-18, Ту-104, Ан-10 и Ту-154. Однако извест­но, что по мере увеличения грузоподъемности и пассажировместимости самолетов производительность труда работни­ков воздушного транспорта возрастает, а себестоимость перевозок снижается, создается возможность выполнить заданный объем пе­ревозок меньшим числом самолетов, что способствует уменьшению частоты движения самолетов в районах аэропортов и улучшает без­опасность полетов. Учитывая развитие воинских воздушных перевозок, есть все основания полагать, что для их выполнения все большее применение будут находить тяжелые транспортные самолеты грузоподъемностью 100 т и выше и пассажирские или конвертируемые самолеты вместимостью 300-500 человек и более.

По типу установленных двигателей современные транспортные самолеты и вертолеты подразделяются на имеющие газотурбинные (ГТД) и поршневые (ПД) двигатели.

Самолеты с газотурбинными двигателями в свою очередь делятся на имеющие турбореактивные двигатели (ТРД) и турбовинтовые (ТВД).

Самолеты с турбовинтовыми двигателями имеют гораздо меньший по сравнению с реактивными удельный расход топлива.

В настоящее время все большее распространение получают транспортные самолеты с двухконтурными турбореактивными двигателями (ДТРД), занимающими по экономичности промежуточное положение между ТВД и ТРД.

С дальнейшим ростом скоростей транспортных самолетов наибо­лее перспективными являются самолеты с бескомпрессорными во­здушно-реактивными двигателями, прямоточными (ПВРД) и пуль­сирующими (ПуВРД), имеющими при крейсерских скоростях поле­та, соответствующих числу М > 3, лучшие по сравнению с ДТРД эксплуатационные характеристики.

С точки зрения, ведомственной принадлежности транспортные самолеты (вертолеты) делятся на военные и самоле­ты (вертолеты) гражданской авиации.

На военных самолетах устанавливается дополнительное оборудование, связанное с выполнением боевых задач (вооружение, спе­циальное оборудование для парашютного десантирования войск, техники и грузов, система заправки топливом в полете и т. п.).

На сегодняшний день существует довольно много разных летательных аппаратов, но не каждый из них называется самолетом. Под этим термином понимают любое воздушное судно, которое предназначено для полетов в небе за счет силовой установки, которая создает тягу и крыла, которое все время остается недвижимым. Именно недвижимое крыло является главной характеристикой самолета, отличающей его от любых других летательных средств.

Сам по себе этот термин появился в далеком 1857 — тогда российский пилот назвал так аэростат, самолетов в том смысле, в котором мы употребляем это слово сегодня, еще не было. В близком к современному значение его упомянули через несколько лет — в 1863 году. Это была статья «Воздухоплавание», опубликованная в 1863 году в журнале «Голос». Автором был журналист Аркадий Эвальд.

На сегодняшний день существует огромное количество классификаций самолета. Например, по количеству крыльев, по аэродинамической системе, по типу шасси и по скорости.

В этом тексте мы рассмотрим одну из основных типологий. Любые самолеты, в первую очередь, разделяются по предназначению. Они бывают гражданскими, военными и экспериментальными. Каждая из этих категорий, в свою очередь также разделяется на несколько видов.

Как очевидно из самого названия, это самолеты, предназначенные для перевозки пассажиров или грузов. Первый полет на самолете такого типа произошел в России больше ста лет назад — в 1914 году. Полет был совершен из Петербурга в Киев, а самолет назывался «Илья Муромец». На борту находились 16 пассажиров.

Сегодня самым известным и часто используемым авиалайнером современности называют американский самолет модели Douglas DC-3. Он впервые совершил полет с пассажирами еще в далеком 1935 году. За прошедшее время самолет совершенствовали, на его основе создавались многие другие модели, в том числе и советской авиации.

Гражданские самолеты могут быть транспортными, учебными и специального применения. Транспортные, в свою очередь, делятся на по назначению:

  • Грузовые — для транспортировки грузов;
  • Пассажирские — те самолеты, которыми мы летаем;

Разновидностей таких транспортных средств очень много. Проще всего их делить просто по производителю. На самом деле подавляющее большинство самолетов мира произведено такими компаниями:

Boeing

Это американская компания, которая появилась очень давно, в 1916 году. Еще с тех пор она производила самолеты для гражданской авиации. Самая популярная модель — Боинг-737. Именно этот самолет, выпущенный в 1968 году сегодня используется чаще всего. Само название «Боинг» уже стало практически синонимом слова самолет.

Airbus

Эта компания на сегодня является главным конкурентом вышеописанного Боинга, хотя и была основана намного позже — в 1970 году. Эта европейская компания, на сегодняшний день главный ее офис находится во Франции. Некоторые модели этого производителя отличаются экономичностью, что делает их серьезным конкурентом Боингам.

Военные

Военные самолеты созданы для ведения боевых действий, то есть защиты от врага или же наоборот, нападения. Они подразделяются на некоторые виды, но в целом, могут выполнять самые разные задачи — в зависимости от сложившийся ситуации.

Бомбардировщики

У этого подвида военных самолетов по сути одна задача — уничтожение каких-либо наземных объектов с воздуха. Это происходит посредством сброса на цель бомб или ракет. На сегодняшний день существует очень много различных моделей, среди самых часто используемых Су-24 и Су-34.

Именно в бомбардировщика был переделан первый пассажирский самолет «Илья Муромец», о котором шла речь выше. В ходе Первой мировой войны самолет переоборудовали и в дальнейшем он всегда выполнял функции бомбардировщика.

Истребители

В отличии от бомбардировщиков, такие самолет используются для боя в воздухе. Название «истребитель» звучит громко и грозно, но на самом деле такие самолеты относятся к оборонной технике. Именно для наступления их почти никогда не используют. Истребители активно использовались обеими сторонами во время Второй мировой войны — самые известные модели МиГ-3 и Як-1.

Интересно, что в самых первых моделях истребителей, был установлен не пулемет, как сегодня, а револьвер, поэтому скорость стрельбы была куда ниже.

Истребители-бомбардировщики

Естественно, две вышеописанные модели соединили, чтобы получить универсальную модель, совмещающую в себе функции обоих видов. Главное преимущество этой разновидности — возможность бомбить любые наземные цели вообще без прикрытия. Такие самолеты очень легкие, маневренные и оборудованы мощным вооружением. Самые удачные модели Миг-27, Су-17, SEPECAT Jaguar.

Перехватчики

На самом деле это не совсем отдельный класс, просто подвид истребителей. Главное отличие в том, что перехватчики созданы для уничтожения конкретной цели, а именно вражеских бомбардировщиков. По строению они также немного отличаются — такие модели дополнительно оборудованы радиолокационным оборудованием. известные модели — Су-15, Су-9 и другие.

Предназначение штурмовиков — поддержать с воздуха сухопутные войска. Также их часто использовали и просто для поражения разных объектов. Самая популярная модель называется Ил-2 и этот самолет самый массовопроизводимый в истории — было выпущено почти 37 тысяч единиц.